手机扫码访问

初二第十二章 全等三角形检测题及答案解析

2022-01-061 9.99元 8页 292.00 KB
立即下载 侵权申诉 举报
预览已结束,查看全部内容需要下载哦~
下载需要9.99
点击下载完整资料立即下载
版权声明
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,qqbaobao负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站微信客服:wwwQQBAOBAO
展开
第十二章全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2014·江西南昌中考)如图所示,下列条件中,不能判断的是()A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC第3题图第2题图第1题图2.如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是(  )ABCD3.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不正确的是(  )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE4.在△ABC和△中,AB=,∠B=∠,补充条件后仍不一定能保证△ABC≌△,则补充的这个条件是()第5题图A.BC=B.∠A=∠C.AC=D.∠C=∠5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(  )A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA6.要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是(  )A.边角边B.角边角C.边边边D.边边角 第7题图第6题图7.如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠28.在△和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=EDB.AB=FDC.AC=FDD.∠A=∠F9.如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,其中一定正确的是(  )A.①②③B.②③④C.①③⑤D.①③④第9题图第10题图10.如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等(  )A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11.(2014·福州中考)如图所示,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.12.如图所示,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=. 第15题图第14题图第13题图14.如图所示,已知在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE=度.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第17题图16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是cm.第16题图17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.18.如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.三、解答题(共46分)19.(6分)(2014·福州中考)如图所示,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.第21题图第20题图20.(8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.22.(8分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.第22题图第23题图 23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.24.(9分)(2014•湖南邵阳中考)如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.5.D解析:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立.∵△BCD≌△ACE,∴∠DBC=∠CAE.∵∠BCA=∠ECD=60°,∴∠ACD=60°.在△BGC和△AFC中,∴△BGC≌△AFC,故B成立.∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立.6.B解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7.D解析:∵AC⊥CD,∴∠1+∠2=90°.∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故选项B、C正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故选项A正确.∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故选项D错误.故选D.8.C解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9.D解析:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);由①可得CE=BD,BE=CD,∴③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10.C解析:A.∵∥,∴∠=∠. ∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等.B.∵=,∠=∠,∴△≌△,故本选项可以证出全等.C.由∠=∠证不出△≌△,故本选项不可以证出全等.D.∵∠=∠,∠=∠,,∴△≌△,故本选项可以证出全等.故选C.11.5解析:根据三角形的中位线性质定理和全等三角形的判定与性质进行解答.∵点D,E分别是边AB,AC的中点,∴AE=CE=AC,DE是△ABC的中位线,∴DE=BC,DE∥BC.∵CF=BC,∴DE=CF.又∵∠AED=∠ECF=90°,∴△ADE≌△EFC,∴EF=AD=AB=5.12.因为所以△BDE≌△CDA.所以在△ABE中,.13.135°解析:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE.又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14.60解析:∵△ABC是等边三角形,∴∠ABD=∠C,AB=BC.∵BD=CE,∴△ABD≌△BCE,∴∠BAD=∠CBE.∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°.15.55°解析:在△ABD与△ACE中,∵∠1+∠CAD=∠CAE+∠CAD,∴∠1=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS).∴∠2=∠ABD.∵∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.16.3解析:如图所示,作DE⊥AB于E,因为∠C=90°,AD平分∠CAB,所以点D到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8cm,BD=5cm,所以DE=DC=3cm.所以点D到直线AB的距离是3cm.第17题答图第16题答图 17.31.5解析:如图所示,作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF.∴=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.18.15解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE,AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm).19.分析:由已知BE=CF证得BF=CE,从而根据三角形全等SAS的判定,证明△ABF≌△DCE,再利用全等三角形的对应角相等得出结论.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵AB=DC,∠B=∠C,∴△ABF≌△DCE.∴∠A=∠D.点拨:一般三角形全等的判定方法有:SAS,ASA,AAS,SSS,证明三角形全等时,要根据题目已知条件灵活选用.20.分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB-∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB-∠CAD)=,∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21.分析:首先根据角之间的关系推出再根据边角边定理,证明△≌△,最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为,所以.又因为 在△与△中,错误!未指定书签。所以△≌△.所以.(2)因为△≌△,所以,即22.分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线的性质证明△ADC≌△ADE,∴AC=AE,再将线段AB进行转化.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB. (2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23.证明:∵DB⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°.∴在△ACE与△ABD中,∴△ACE≌△ABD(AAS),∴AD=AE.∴在Rt△AEF与Rt△ADF中,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.24.分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.解:(1)△ABE≌△CDF,△AFD≌△CEB.(2)选△ABE≌△CDF进行证明.∵AB∥CD,∴∠1=∠2.∵AF=CE,∴AF+EF=CE+EF,即AE=FC,第24题答图在△ABE和△CDF中,∴△ABE≌△CDF(AAS).点拨:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS.注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. x_k_b_1
同类资料
更多
初二第十二章 全等三角形检测题及答案解析